H(t)=-16t^2+40t+24

Simple and best practice solution for H(t)=-16t^2+40t+24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+40t+24 equation:



(H)=-16H^2+40H+24
We move all terms to the left:
(H)-(-16H^2+40H+24)=0
We get rid of parentheses
16H^2-40H+H-24=0
We add all the numbers together, and all the variables
16H^2-39H-24=0
a = 16; b = -39; c = -24;
Δ = b2-4ac
Δ = -392-4·16·(-24)
Δ = 3057
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{3057}}{2*16}=\frac{39-\sqrt{3057}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{3057}}{2*16}=\frac{39+\sqrt{3057}}{32} $

See similar equations:

| 5(y+7)+y=2(y+5)+4 | | r+1/2=41/2 | | 4x+1/3x-1+2=0 | | y=8−6(6-1) | | x+1/3=42/3 | | b-3/4=4 | | r+2/3=3 | | 81^1/2((3x+9)+24)-(2x-5)=1478 | | b-1/3=4 | | -8.7=-1.2+w/3 | | 10+2(x-9)=4^5÷4^3 | | x^2+6^2=100 | | 169=263-x | | 11w-2w=54 | | -u+72=292 | | 250=203-x | | 5x+35=13-53 | | 4(v+2)-6v=22 | | 5x^2–35x–90=0 | | (12k+10)/2=k+15 | | 0.66=0.08x | | t^-49t=0 | | 12y3=36-y | | 81=3v+6v | | 15=14w-9w | | 5x+8x-9x-5=23 | | 4x+5+2x+20+5x-10=360 | | 11/6x+2/3x=37 | | 5+4x=15+9x | | 4(a-8)=3(a+4) | | -25=-5+4x | | 49+2x=39+6x |

Equations solver categories